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e present a new technique for adaptively choosing the sequence of molecular compounds to test in drug

discovery. Beginning with a base compound, we consider the problem of searching for a chemical deriva-
tive of the molecule that best treats a given disease. The problem of choosing molecules to test to maximize
the expected quality of the best compound discovered may be formulated mathematically as a ranking-and-
selection problem in which each molecule is an alternative. We apply a recently developed algorithm, known
as the knowledge-gradient algorithm, that uses correlations in our Bayesian prior distribution between the per-
formance of different alternatives (molecules) to dramatically reduce the number of molecular tests required,
but it has heavy computational requirements that limit the number of possible alternatives to a few thousand.
We develop computational improvements that allow the knowledge-gradient method to consider much larger
sets of alternatives, and we demonstrate the method on a problem with 87,120 alternatives.
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1. Introduction
In drug discovery, medical researchers often begin
with a single molecule that shows some promise for
treating a given disease and then test many variations
of that molecule to find one that produces the best
results. These variations are obtained by substituting
atoms or groups of atoms at certain locations (sites)
on the original molecule with other atoms or groups
of atoms (substituents). The number of variations
increases exponentially in the number of sites and
substituents; therefore, the number of candidate com-
pounds is usually extremely large. Synthesizing and
testing a compound may require several days” work
and a significant investment of lab materials, which
strictly limits the number of tests that a research
team can perform. A critical problem is therefore
deciding which compounds should be tested to most
accurately and quickly find compounds with good
disease-treating ability.

The problem of deciding which compounds to eval-
uate can be modeled mathematically as a ranking-
and-selection problem. In this problem, we have a
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budget of measurements that we allocate sequentially
to alternatives (molecular compounds in our case) so
that when we finish our experiments, we have col-
lected the information needed to maximize our abil-
ity to find the best alternative. In deciding which
compound to measure, we may use the fact that
compounds with similar structures often have sim-
ilar properties. Although a vast literature exists for
ranking-and-selection problems in which the alterna-
tives are treated independently, the use of structure
within the set of alternatives has received much less
attention. A recent ranking-and-selection algorithm
that uses correlated Bayesian beliefs to take advan-
tage of structure within the set of alternatives is the
knowledge-gradient algorithm for correlated beliefs
(KGCB) (Frazier et al. 2009). However, the standard
implementation of this algorithm requires storing and
manipulating a covariance matrix whose dimension is
the number of alternatives. In drug discovery, where
one commonly has tens or hundreds of thousands of
alternatives, this strategy is computationally expen-
sive at best and often computationally infeasible.
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In this paper, we represent beliefs about molecules
using a linear, additive model. We take advantage
of the structure of this model to develop two com-
putational improvements to the knowledge-gradient
algorithm that substantially streamline the procedure.
When the number of molecules considered is large,
as it almost always is during drug discovery, our
new procedures improve computation time by sev-
eral orders of magnitude. These improvements allow
the KGCB algorithm to be used in applied settings
for which the standard implementation is simply
too slow to be useful. After introducing these new
computation-saving procedures, we evaluate the per-
formance of the KGCB algorithm using a previously
published data set.

In this paper we restrict our discussion to drug
discovery; however, it is worth noting that these
improvements have applications not just in drug dis-
covery, but in any problem in which beliefs obey a
linear additive model. One example is that of choos-
ing the shortest path through a network when the
length along a path is exactly or approximately equal
to the sum of the lengths along each link. Some of the
computational improvements we develop can also be
applied to problems whose beliefs are only approxi-
mated by a linear additive model, such as identifying
which ads produce the most ad clicks based on a lin-
ear model using features from each ad.

There are two main approaches to ranking and
selection: the frequentist approach, which is based
entirely on observed data, and the Bayesian approach,
which uses subjective a priori beliefs on the values
of the compounds. We briefly review the Bayesian
approach here. For a more thorough review of both
approaches, see Swisher et al. (2003) and Kim and
Nelson (2006).

Within the Bayesian approach, there are two main
directions of research. The first is the optimal comput-
ing budget allocation (OCBA) (see, e.g., Chen et al.
1996), in which the probability of correct selection
is maximized and the posterior variance is reduced
under the assumption that sampling will not change
the posterior means. The second direction consists of
value of information procedures (VIP) (see, e.g., Chick
and Inoue 2001b) and is similar to OCBA in that it
maximizes the improvement in a single stage’s alloca-
tion, but unlike OCBA, it considers the change in pos-
terior mean when estimating the improvement. One
of the first contributions in VIP is Gupta and Miescke
(1996), who use a one-step analysis under an indepen-
dent normal prior distribution. Under this analysis,
one chooses the measurement decision that would be
optimal if only one additional sample were allowed.
The independent normal case was then further ana-
lyzed by Frazier et al. (2008) and extended to the
unknown variance case by Chick et al. (2010). Frazier

et al. (2008) use the term “knowledge-gradient” to
refer to this one-step approach because the value
of a single sample is the difference in implementa-
tion value between two different quantities of knowl-
edge—the knowledge one has before the sample,
and the knowledge one has after it. The knowledge-
gradient approach of Gupta and Miescke (1996) is
extended to correlated normal beliefs in Frazier et al.
(2009) and their KGCB algorithm. With correlated
beliefs, one may model how structural relationships
between alternatives (such as those between chem-
ically related molecules) cause the values of alter-
natives to relate to one another. These relationships
allow learning about multiple alternatives from just
a single measurement and often result in a dramatic
improvement in measurement efficiency.

An abundant literature in ranking and selection
treats beliefs that are a priori independent across alter-
natives, but correlated a priori beliefs have received
much less attention. To our knowledge, Frazier et al.
(2009) are the first to consider such beliefs for
ranking and selection. There are, however, Bayesian
approaches to ranking and selection using common
random numbers (CRN). Correlated sampling with
CRN induces correlated posteriors even if the prior
is independent. CRN is useful for ranking and selec-
tion because sampling two systems with positively
correlated noise allows one to estimate which sys-
tem is better with more accuracy than is possible
with independent noise (see, e.g., Ehrlichman and
Henderson 2008, who also provide a more general
technique than CRN for sampling with correlation).
Chick and Inoue (2001a) propose a VIP approach
for using CRN, whereas Fu et al. (2007) propose
an OCBA-based approach. In the indifference-zone
ranking-and-selection and multiple comparisons lit-
erature, several methods allow for CRN (Yang and
Nelson 1991, Nelson and Matejcik 1995, Kim and
Nelson 2001), but these methods are non-Bayesian
and hence do not use prior distributions, correlated
or otherwise. It is important to note that in the drug
discovery problem we consider here, the samples are
independent, and only the prior distribution is corre-
lated, which differs from using an independent prior
distribution with correlated sampling. If the prior is
independent, then we must sample each alternative
at least once to do well in all but certain special
cases, regardless of whether samples are correlated. It
is only with a correlated prior that one may sample
fewer than the full set of alternatives and still reason-
ably hope to find an alternative whose value is close
to best.

Although correlated priors have appeared in-
frequently in Bayesian ranking and selection, some
frequentist methods use linear models to compare
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alternatives’ values without requiring that every alter-
native be sampled, and they achieve conceptually sim-
ilar improvements to those with correlated priors.
These methods even allow infinite numbers of alter-
natives, as would occur if we were tuning a set of
continuous parameters to maximize the output of a
simulation model. For the use of such techniques in
multiple comparisons, see Hsu (1996, Chapter 7); for
their use in multiarmed bandits; see Kleinberg (2005).
The use of linear designs within response surface
methods (Myers and Montgomery 2002) can also be
understood in this way.

In contrast with their rarity within Bayesian rank-
ing and selection, correlated prior distributions have
a rich history within Bayesian global optimization
(BGO), where Gaussian process prior distributions
model the similarity between values of a continu-
ous function evaluated at nearby points. Then, as in
Bayesian ranking and selection, these beliefs are used
to decide at which points to evaluate this function,
with the ultimate goal of finding the function’s global
maximum. There are two predominant methods for
choosing measurements in BGO: maximal probability
of improvement (MP]I, also called P*) (Kushner 1964,
Stuckman 1988, Perevozchikov 1991) and expected
improvement (EI) (Mockus 1972, Mockus et al. 1978,
Jones et al. 1998). These two methods are most fre-
quently applied when measurements are free from
noise, but MPI was extended to the noisy case in
Calvin and Zilinskas (2005), and EI was extended to
the noisy case in Huang et al. (2006). The expected
improvement criterion is similar to the knowledge-
gradient method except that EI considers the improve-
ment in the function’s value only at the point measured,
whereas KG considers improvements across the entire
domain. KG methods were compared with EI methods
for a discretized BGO problem in Frazier et al. (2009).
KG performed slightly better than EI in the noise-
free case and significantly better in the noisy case. See
Sasena (2002, §3.2) and Frazier (2011) for reviews of
the BGO literature.

Within the medical community, the process of
using statistical and computational tools to support
drug discovery is called virtual or in silico screening.
Although the literature on this subject has enjoyed
massive growth in the past few years, only a small
portion of it treats sequential designs. Most of it
focuses instead on nonsequential prediction tech-
niques using data collected in a single batch (see, e.g.,
Burbidge et al. 2001, Jorissen and Gilson 2005, Davies
et al. 2006), despite the fact that sequential designs
can be much more efficient (Warmuth et al. 2003).
One exception is Bajorath (2002), which is an early
review of virtual screening that differentiates between
focused (which we call nonsequential) and sequential
screening.

Previous mathematical work on sequential experi-
mental design for drug discovery has been focused
within the machine learning community, where it has
been formulated as an active learning problem. Most
frequently, active learning concerns itself with choos-
ing which examples should be labeled to best train a
classifier. Warmuth et al. (2003), with more mathemat-
ical details provided in Warmuth et al. (2002), take
this approach, where compounds that perform well in
a laboratory test are labeled as “active,” and those that
perform poorly are labeled “inactive.” These labels
are assumed to be available without noise. Taking an
alternative approach, De Grave et al. (2008) consider
a version of the drug discovery problem closer to the
one we consider here, where one observes real-valued
activity levels for compounds. Rather than searching
for the single best compound, their goal is to find the
k compounds with the largest activity levels where
measurements are assumed to be free from noise. We
also evaluate several empirical strategies, including
versions of MPI and EL

An important part of any Bayesian ranking-and-
selection algorithm for drug discovery is the prior dis-
tribution on the values of the candidate compounds.
Several such prior distributions have been developed
in the medicinal chemistry literature, where the collec-
tion of statistical models that predict biological activ-
ity from chemical structure are known collectively
as quantitative structure activity relationship (QSAR)
models. In our case, the biological activity of interest
is the compound’s ability to treat a disease, as mea-
sured in a laboratory test. Examples of such labora-
tory tests include those that test a compound’s ability
to kill diseased cells or inhibit a protein interaction
believed to be critical to the disease’s progression.

The first attempt to quantify relationships between
biological activity and chemical structure dates to
1868, when Brown and Fraser published the first
formulation of a quantitative relationship between
“physiological activity” and “chemical structure”
(Brown and Fraser 1868). The modern origins of the
field lie in the Free-Wilson model (Free and Wilson
1964) and the Hansch analysis (Hansch and Fujita
1964). In both methods, multiple linear regression is
used to correlate activity on laboratory tests with col-
lections of compound features. In the Free-Wilson
model, these features are indicator variables that indi-
cate the presence or absence of substituents at given
sites. In the Hansch analysis, these features are phys-
iochemical properties such as molecular weight and
lipophilicity. More recently, support vector machines
have been used together with much larger collec-
tions of compound features (see, e.g., Warmuth et al.
2003, Jorissen and Gilson 2005). Many other statistical
methods have been applied to QSAR, including clus-
ter analysis, pattern recognition, principle component



Negoescu, Frazier, and Powell: The KG Algorithm for Sequencing Experiments in Drug Discovery

INFORMS Journal on Computing 23(3), pp. 346-363, ©2011 INFORMS

analysis, discriminant analysis, partial least squares,
neural networks, and evolutionary algorithms. See
Grover et al. (2000) for a review.

In this paper, we consider the Free-Wilson model.
The Free-Wilson model assumes that the base
molecule and each substituent contributes additively
to the overall value of the compound. This contribu-
tion is assumed to be independent of the presence
or absence of other substituents. We also consider a
generalization of the Free-Wilson model that allows
for deviations from perfect linearity. The structure
of the Free-Wilson model allows us to derive two
highly efficient implementations of the KGCB algo-
rithm that can be used for sets of candidate com-
pounds much larger than can be handled by the
original algorithm. Although the original implemen-
tation manipulates a belief on the values of the com-
pounds, our new implementations manipulate beliefs
on the parameters of our linear model. Because the
number of compounds is exponential in the number
of substituents per site, maintaining a belief in this
way reduces computation and memory requirements
substantially and allows the KGCB algorithm to be
used on problems with even hundreds of thousands
of candidate compounds.

The rest of this paper is organized as follows. In §2,
we describe the ranking-and-selection problem and
the relationships between the structure and value of
an alternative. In §3, we review the original imple-
mentation of the KGCB algorithm, and in §§4 and 5,
we describe two computational improvements to this
implementation. In §6, we present an empirical study
of the KGCB algorithm on a previously published
data set.

2. Model

We suppose that we have M alternatives and a bud-
get of N measurements, and we wish to sequentially
decide which alternatives to measure so that when
we exhaust our budget of measurements, we have
maximized our ability to find the best alternative.
We assume that samples from testing alternative i
are normally distributed with unknown mean ; and
known variance A; and are conditionally indepen-
dent of all other samples, given the unknown mean
and the decision to sample that alternative. We write
¥ to indicate the column vector (d,...,3,)". For
a summary of all the symbols we use, please refer
to Table 1. We further assume that our belief about
¥ is distributed according to a multivariate normal
prior distribution with mean vector u® and positive
semidefinite covariance matrix X

O~ N (u?, 0.

We assume that we have a budget of N sam-
pling decisions, x°,x',...,xN~!. The measurement
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Table 1 Table of Notation
m Number of alternatives (in drug discovery, total number of
compounds)
N Number of measurements in our budget
Y Unknown mean of alternative
A Known variance of alternative /
9 Column vector (9, ..., Sy)
u,3r Mean and covariance of posterior distribution on  after
n measurements
X! Sampling decision at time /, x' € {1,..., M}
e Measurement error of alternative x”, €' ~ (0, An)
ym Sampling observation from measuring alternative x”,
J’/‘nﬂ — ﬁx” + En+1
I Set of all possible policies {(x°, ..., x"="): x” € F"}
S” Defined as the pair (u", 2")
e, Column vector of 0s with a 1 at position x
e
(3, x Defined as —2*—
(&%) VA 43
kG Knowledge gradient factor, defined as
max, E,[max; u™*'| 8" = s, X" = x] — max; u!
xKe Measurement decision of the KGCB policy
a; Contribution of attribute (in drug discovery, substituent) /
s* Row vector of 0s and 1s. A 1 indicates that the jth attribute is
present in alternative x
{ Value of the base alternative (with Os in all locations)
L(i) Location of substituent i
A(l) Vector of substituents that may be placed at location /
k Total number of attributes
b, Deviation term associated with alternative x
0y Standard deviation of the b, terms
a Vector of attribute values (¢, a;, @y, ..., a;)
X Matrix in which each row is an alternative
X" Column vector of 0s and 1s encoding alternative x”
¥ Defined as An + (X")"C" X"
et Defined as y™' — (6")7 X"
0, C Mean and covariance of posterior distribution on
a (e~ N(8,C))
6", c" Mean and covariance of posterior distribution on « after

n measurements

decision x" selects an alternative to test at time n
from the set {1, ..., M}. The measurement error e"*!
is assumed to be normally distributed €"*! ~ /' (0, A,)
and independent conditional on x". Therefore, the
resulting sample observation is §"™ = 9, + €'
Through experiments, we try to learn the value of 3,
which is assumed to be fixed throughout the duration
of the trials.

We define a filtration (7")Y_, as the sequence of
sigma-algebras generated by the samples observed by
time n and the identities of their originating alterna-
tives. More explicitly, 7" is the sigma-algebra gen-
erated by x°, ', x', #%,...,x"!, §". We write E, and
Var, to indicate E[- | #"] and Var[- | "], the condi-
tional expectation and variance, respectively, taken
with respect to 7". Then, define u" :=E,[8#], and 3" :=
Cov[¥ | 7"]. Conditionally on F", our posterior belief
distribution on ¢ is multivariate normal with mean
vector u" and covariance matrix X".

We define II to be the set of all possible policies
satisfying our sequential requirement; that is, II :=




Negoescu, Frazier, and Powell: The KG Algorithm for Sequencing Experiments in Drug Discovery

350

INFORMS Journal on Computing 23(3), pp. 346-363, ©2011 INFORMS

{(x0, ..., xN=1): x" € F"}. We let 7 be a generic policy
in I, and we write E” to indicate the expectation
taken when the policy is .

After exhausting the budget of N measurements,
we select the alternative with the highest posterior
mean. Our goal is to choose a measurement policy
maximizing expected reward, which can be written as

sup [E’T[max Mf’]
mell !

We now describe how the prior mean vector u’
and covariance matrix X° are chosen according to
the Free-Wilson model. Although we apply this work
to drug discovery, where we think of “compounds,”
“sites,” and “substituents,” we describe the model in
the generic language of “alternatives,” “dimensions,”
and “attributes.” These generic terms facilitate the
observation that the Free-Wilson model is simply a
linear model whose explanatory variables are zero
or one. To define them, we suppose the existence of
several dimensions and state that each attribute may
be associated with only one dimension. Each alter-
native is obtained through a specific choice of which
single attribute, if any, is present in each dimension.
In the context of drug discovery, an alternative is a
compound, a dimension is a site, and an attribute is
a substituent, where we consider the same atom or
chemical group substituted at two different sites to be
two different attributes.

2.1. The Free-Wilson Model
The Free-Wilson model (Free and Wilson 1964) ass-
umes that each attribute contributes additively to the
value of the alternative. Denote by 4, the contribution
of attribute i, and denote by s* a vector of zeros and
ones with a one for every attribute that is present in
alternative x. Thus, sf =1 means that the ith attribute
is present in alternative x. We denote by { the value of
the base alternative, which is the alternative obtained
from taking sf = 0 over every attribute i. Let L(7)
denote the dimension associated with attribute i, and
let k denote the total number of attributes. We restrict
the s* to specify at most one attribute associated with
each dimension. That is, we require of each x that
>i 5 1i14)=y < 1 for each dimension /. Furthermore, we
allow any s* that meets this specification.

To illustrate these notions for drug discovery, we
constructed a small toy example in Figure 1. This

X

Y

Figure 1 A Toy Example lllustrating the Notions of “Attributes,”

“Dimensions,” and “Alternatives”

compound (alternative) has two sites (dimensions) X
and Y, at which atoms or groups of atoms (attributes)
can be attached to create new compounds. Assume
there are two substituents, A and B, which can be
placed at site X and two substituents, C and D,
which can be placed at site Y. Then, the original
compound without any substituents attached (hav-
ing hydrogen atoms at sites X and Y) can be rep-
resented by the vector s = (0,0,0,0), where the
first two zeros correspond to site X and the last two
zeros correspond to site Y. The compound that results
from attaching nothing at site X (keeping the hydro-
gen atom) and substituent C at site Y is represented
by the vector s°© = (0,0,1,0). The compound that
results from attaching substituent B at site X and
substituent C at site Y is represented by the vector
s8¢ =(0,1,1,0). For this example, k is 4 (A, B, C, D),
L(1) = L(A) =0 (attribute A is absent), L(2)=L(B)=X,
L(B)=L(C)=Y, and L(4) =L(D) =0.

The Free-Wilson model assumes that each attribute
contributes additively to the value of the alternative,
which may be expressed as

ﬁx Zzais;{ +§

To exemplify, going back to the example in Fig-
ure 1, the value of the alternative having attribute B at
dimension X and attribute C at dimension Y is then

Uge=a,-0+ag-1+ac-14+ap-0+{=ag+ac+{.

Under this model, if we sample alternative x, hav-
ing attributes given by s{,..., s, the sample value
would be of the form

Jo=asi+ tasi+i+e,

where € ~ N(0,A,) is independent measurement
noise.

We suppose that we have an independent normal
prior distribution on { and 4, ..., ;. Under this prior
distribution, the mean u; of our belief about the value
of alternative i is

wl =E[Z]1+ s, Ela,],

and the covariance E?j between the values of alterna-
tives i and j is

2?] = COV(i, ]) = COV <Zams‘in + g/ Zam’SZn’ + g)

= Var(¢)+ X sj,s), Cov(a,,, a,,)

m, m'

= Var({) + Z Var(am)’

me;;
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where %, ={l€{1,...,k} | sj =s] =1} is the set of
attributes common to alternatives i and j.

The Free-Wilson model assumes that the contribu-
tion of each substituent is linear and additive. In prac-
tice, it is easy to envision substituents that interact
with each other. For example, there might be a set
of synergistic substituents for which the compound
containing all of them has a much larger value than
compounds containing only a subset of them. Such
behaviors may be handled with models that are linear
in the parameters but which include deviation terms.
One such model is presented in the next section.

2.2. The General Model

We now generalize the Free-Wilson model, which
assumes a perfectly additive structure, to allow some
deviation from perfect additivity. These deviations are
specified by terms b,, with one such term for each
alternative x. The resulting model is still a linear
model but with more terms. Under this model the
value of alternative x is

S.=Y a;si+b,+¢.

Under our prior distribution, the terms by, ..., by
are normally distributed with mean 0 and a vari-
ance of. In addition, they are independent of each
other as well as from the 4; and ¢ terms. Under this
structure, the covariance E?j between the values of
alternatives i and j is

2?/- = Cov(i, j)=Cov (Zamsin—i-g—i-bi, Zam,s;/ —i—{—i—bj)
= Var({)+ ) S;inS{n/COV(amramf)"‘o'bzl[i:j}

= Var({)+ ) Var(a,)+0;1;,_j.

me;;

Thus, under this general model, the covariance matrix
of the values of the alternatives under our prior dis-
tribution is obtained by taking the covariance matrix
from the Free-Wilson model and adding ¢} to the
diagonal entries. Since E[b,] =0 for all x, the mean u°
of our belief about the values of the alternatives is the
same as it is under the Free-Wilson model.

We see a spectrum of behaviors from this model
over different values of 7. When o7 =0, the model is
identical to the Free—-Wilson model in §2.1. When o7 is
nonzero but still significantly smaller than Var(a;), it
models a situation in which the values of the alterna-
tives are well approximated by an additive structure,
but we understand that there may be small devia-
tions from it. When o7 is very large (in particular,
much larger than the Var(a;) terms), the deviation
from additivity is quite large, correlations between the

alternatives are very weak, and our belief is similar
to one that is independent across alternatives.

It is in this second regime, where o7 is nonzero but
not too large, that this general model is likely to be
most useful. It allows us to exploit the additive struc-
ture of a problem to learn quickly while it simultane-
ously allows flexibility in its understanding that the
alternatives’ true values may not obey this structure
perfectly.

In the third regime, where o7 is large, we essentially
have an independent prior distribution, and learning
the value of one alternative teaches us almost nothing
about the value of the other alternatives. This makes
it very difficult to learn in situations with large num-
bers of alternatives because to come close to finding
a good alternative, we need to make at least as many
measurements as the number of Bs. In such situations,
we must either find another nonadditive structure in
the problem or resign ourselves to making more mea-
surements than the number of alternatives.

Although the problem is inherently quite difficult
when o7 is large and often requires many measure-
ments to find good alternatives, the KGCB policy that
we present may still work well relative to the difficulty
of the problem. Indeed, the case of independent beliefs
was considered in Frazier et al. (2008), and the KG
policy was shown to work well compared with other
state-of-the-art policies.

3. The KG Algorithm with

Correlated Beliefs
The knowledge-gradient with correlated beliefs
(KGCB) policy, as introduced in Frazier et al. (2009),
measures the alternative that attains the maximum in

KG,n __ n+1
v _mxax[En [miax;ui

S'=s,x" =x] —maxu!, (1)

where S" := (u",%") parameterizes the posterior
belief distribution at measurement n. The knowledge-
gradient (KG) factor vX©'" represents the incre-
mental value obtained from measuring a particular
alternative x.

After each alternative is measured, we obtain a pos-
terior distribution on ¢ that depends on which alter-
native was measured x", its sampled value §"*!, and
our belief on ¢ prior to sampling, which is parame-
terized by w" and X". This posterior distribution may
be calculated using standard results for normal sam-
pling with a multivariate normal prior distribution
(see, e.g., Gelman et al. 2004) as

an+1 n AN
Y Ste.e.3,

— IU‘Z S
e s
A+ 2

» 2n+1 — En _
A3

,unJrl — Mn +

where e, is a column M-vector with a single one at
index x and the rest zeros.
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We now describe the time # conditional distribution
of u"*! that allows us to compute (1). This distribution
is multivariate normal, with mean given by the tower
property as E,[u""'] = " and covariance given by the
conditional variance formula as (3", x")a (2", x"),
where Se.

Vv )\X + EXX
The details of this computation are given in Frazier
et al. (2009).

Thus, the time n conditional distribution of w"*!
is the same as that of u"!' = u" + (3", x")Z, where
Z is any independent one-dimensional standard nor-
mal random variable. This allows us to rewrite (1) as

02, x):=

xKG(s) = argmax[E[max(,uf~|—5'l-(2”,x”)Z)

S",x" =x]
n
—maxpu;
1

= argmaxh(u", 6(2", x)).

Here, h: RMxRM—R is defined by h(p,q)=
E[max;p;+g;Z] —max;p;, where p and g are determin-
istic M vectors, and again, Z is any one-dimensional
standard normal random variable.

Frazier et al. (2009) provides a method for comput-
ing h(p, q), which is summarized in Algorithm 2. This
algorithm in turn uses Algorithm 1 in an inner loop.
In Algorithm 2, the components of p and g are sorted
and then some are dropped, which results in new vec-
tors p’ and ¢’ of length M’ and a sequence c’. These
quantities are then used to calculate h(p, q) via

M-1
h(p, q)=2_ @i —a)f(=lciD),
i=1
where the function f is given by f(z)=®(z)+z¢(z)
and where ® is the normal cumulative distribution
function and ¢ is the normal density.

Algorithm 1 (Compute sequence ¢ and undominated
set A)
Require: Inputs p and 4.
1: ¢y« —o00, ¢; < +o0, A«{1}
2: fori=1to M—1do

3: g <+

4 repeat

5 j < Alend(A)]

6: ¢ <P =pis1)/ (@i —4))

7 if length(A)+#1 then

8: k=A[end(A)—1]

9: if ¢ <¢ then
10: A< A(,...,end(A)—1)
11: loopdone «false
12: else
13: loopdone <« true

14: end if

15: end if

16:  until loopdone
17: A<~(A,i+1)
18: end for

Algorithm 2 (Compute helper function )
Require: Inputs p and 4.
1: Sort (p;, )™, such that p; are in nondecreasing
order and ties broken such that p; <p;,;
if ;=41
: fori=1to M—1do
if g;=¢q;,, then
Remove entry i from (p;, q;)
end if
end for
: Use Algorithm 1 to compute ¢ and A from p, g
s pplAlL g <q[A], ¢ < (c[A], +0),
M <« length(A)
: h(p, q) < 1og(Xi5 (Gia — 4 f (~leil)).-

Using Algorithm 2, we can compute h(u", 5 (2", x))
for any vectors " and o (2", x). This then allows us to
compute the KG factor via (1) for each alternative, the
largest of which gives the measurement decision of
the KGCB policy. This is summarized in Algorithm 3.

Algorithm 3 (KGCB, algorithm)
Require: Inputs w" and ".
1: for x=1 to length(u") do

M
i=1

PN AN

Ne)

2: p<u"

3 g<a(3",x)

4:  v<h(p,q) % use Algorithm 2
5: if x=1 or v>v* then

6: Vi<, x*<x

7 end if

8: end for

Within Algorithm 3, Algorithm 2 executes M times.
Within one execution of Algorithm 2, the sort has
complexity O(MlogM) and Algorithm 1 has complex-
ity O(M). Thus, the most computationally demanding
step within Algorithm 2 is the sort, and the overall
complexity of the KGCB algorithm as computed by
Algorithm 3 is O(M?logM).

In drug discovery, families of molecules often con-
tain tens or hundreds of thousands of compounds,
which makes this algorithm for computing KGCB
computationally infeasible. Thus, even though we
might very much wish to use the KGCB method
to reduce the number of physical measurements that
need to be taken, the computational requirements of
actually computing the KGCB measurement decisions
under the standard algorithm (Algorithm 3) preclude
doing so in most cases. The next section describes
a first improvement to the standard algorithm that
dramatically reduces the computational requirements
and allows us to compute KGCB for large numbers of
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linearly related alternatives such as those encountered
in drug discovery.

4. The KGCB, Algorithm

In this section, we present the first of two
computational improvements to the standard imple-
mentation of KGCB that exponentially reduce the
computational and storage requirements of the stan-
dard algorithm. The essential idea behind this
improvement is to maintain a belief on the attributes
themselves instead of on the (much larger) set of alter-
natives. This greatly improves the efficiency of the
KGCB algorithm.

In the subsections that follow, we first describe this
improvement in the context of the Free-Wilson model
from §2.1, and then we extend the improvement to
the general model from §2.2.

4.1. Beliefs on Attributes
In this section we describe how one may maintain a
belief on attributes rather than on alternatives in the
Free-Wilson model of §2.1.

Let a be the vector of attribute values a=({,a,,
...,a;) containing the value of the base molecule
and of each substituent, where chemically identical
substituents at different locations are given differ-
ent indices. We assume the linear additive model for
modeling structure-value relationships from §2.1, and
we let X be a matrix comprised of rows represent-
ing the alternative. Each row of X is a vector of zeros
and ones of the same length as «, and each one indi-
cates an attribute that is present in the alternative.
The value of this attribute is the corresponding com-
ponent in «. In the context of drug discovery, this row
contains a single one in the first entry to indicate that
the base molecule (whose value is () is present, and
then the subsequent entries contain a one for each
substituent present. Thus, this row is a one followed
by the vector s* (defined in §2.1) corresponding to the
molecule x being represented. With these definitions,
the true value of the alternatives is 4 =Xa.

Any multivariate normal belief on @ induces a mul-
tivariate normal belief on . If we have a multivariate
normal belief on a with the (k+1)-dimensional mean
vector 6 and the (k+1) x (k+1) covariance matrix C,

a~N(@,C), (2)

we then have the mean of the values of the alterna-
tives given by E[#]=X#6. The covariance between the
values of the alternatives is given by

k

k

S XiX], Cov(ay, ap) =YX X,,C,

k, k' k, k'

e/ XCX"e;,

where ¢; is, as before, a column vector of length the
size of our alternative database, with a one on posi-
tion i and zeros everywhere else. Thus, the belief
induced on ¢ by (2) is

I~ N(X0,XCXT). 3)

Having described how a generic multivariate nor-
mal prior distribution on « induces a multivariate
normal prior distribution on ¢, we begin with a prior
distribution on a with mean vector §° and covari-
ance matrix C°. Thus, the parameters of the induced
prior distribution on ¥ are u’=X6" and 2°=XC"X".
We similarly define " and C" be the mean vector and
covariance matrix, respectively, of the posterior belief
distribution on « after n measurements. This posterior
belief distribution is also multivariate normal, and we
have u"=X6" and 3"=XC"X'.

There exists a recursive expression for 6" and C”
that is similar to the recursive expression for w”
and 3" given in §3. Before providing this expression,
we first introduce some additional notation. Let X" =
g, xy5 ... ,'.‘)ZZ)T be a column vector of zeros and ones
describing the alternative x" €{1, ..., M} that was mea-
sured at iteration n, where xj =1 represents the pres-
ence of the base alternative and X/ is one for those
attributes i present in alternative x" and zero oth-
erwise. For instance, if the alternative we choose to
measure at iteration 1 is the alternative in the toy
example in Figure 1 having attribute B at site X and
attribute C at site Y, then ¥' =(1;0;1;1;0)T =(1; s2)T.
In addition, define "' =y —(0")"%" and y"=A,. +
(x1)TC"x". Then, the following updating equations
result from standard expressions for normal sam-
pling of linear combinations of attributes (see, e.g.,
Powell 2007):

) €n+1 e
6n+ :0"+7C X,
4
n+1 n 1 nznsn\T —~n ( )
Crl=Cr— (R ETCY).

When the number of substituents is large, main-
taining 6" and C" through this recursive expression
is much more efficient than maintaining w" and %"
through the recursive expression in §3. This is because
the dimension of X" is equal to the number of alter-
natives, which grows exponentially with the number
of substituents per site. For a set of compounds with
five sites and nine possible substituents at each site
(to make 10 possible choices at each site, including the
possibility of attaching no substituent), the number
of possible compounds is 10° compared with only 45
total substituents. In this case, 3" is 10° x 10°, whereas
C" is only 46 x46 (we add 1 to 45 to account for the
base molecule).
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4.2, Implementation of the KGCB, Algorithm
Because 6" and C" are much smaller and easier to
maintain than p" and X", there is significant computa-
tional and storage savings to be achieved by calculat-
ing the KGCB policy from these inputs directly rather
than from " and 3".

To accomplish this, we recall from §4.1 that " and
2" may be written in terms of " and C" as u"=X6"
and 3"=XC"X". We also recall that 3" enters into the
computation of the KG factor for alternative x, vX¢ =
h(u",a(2",x)), only through &(3",x). This quantity
is given by &(2",x)=3"¢, /\/A,+ 32", which depends
only on row x in X" and not on the entire matrix.
To facilitate describing these computations, we define
A, . to be row x from generic matrix A. Then, the
required row of X" may be computed from C" as

S =(XC"X")e,=(XCMX] .

By calculating row x of 3" from C", calculating
0 (2", x) from this row vector, and then computing the
KG factor from o(3",x) and w", we obtain the KG
factor while completely avoiding any computations
with matrices of size M x M. This is summarized in
Algorithm 4.

Algorithm 4 (KGCB, algorithm)
Require: Inputs ¢, C", and X.

1. u" < X6"
2: B« XC"
3: for x=1to M do
4. 2 <—BXXT,'
5. a<«u"
6: b3 [J/A 430,
7 v<h(a,b) % use Algorithm 2
8: if x=1 or v>v* then
9: Vi<, X*<x
10: end if
11: end for

Algorithm 4 is similar to Algorithm 3; the main dif-
ferences are Step 1, which retrieves the mean belief on
alternatives from the mean of the belief on attributes,
and Steps 2 and 4, which together retrieve the covari-
ance of the belief on alternatives from the covariance
of the belief on attributes. The B matrix used in the
second and third operations caches XC”, which does
not depend on the measurement x being considered
in the loop.

Algorithm 4 significantly improves on Algorithm 3
because it computes only X}, a column vector,
instead of the full matrix %". This is particularly sig-
nificant when there are many alternatives. If there
were 10° alternatives, we would create a vector of size
10° x 1 instead of a matrix of size 10° x 10°.

4.3. Extension to the General Model

This first computational improvement, which has
been described thus far in the context of the Free-
Wilson model, can also be implemented for the gen-
eral model.

To do so, we must maintain a belief about the b,
terms together with our belief about { and the g;
terms. Although the number of b, terms is equal to
the number of compounds, which is generally very
large, we need only to maintain a mean vector and
covariance matrix for only those b, terms correspond-
ing to alternatives that we have measured. If we have
not measured a particular alternative x by time #,
then our posterior belief distribution on b, will have
the same marginal distribution that it had under the
prior distribution and will remain independent of /,
the a; terms, and all other deviation terms. Thus,
by explicitly maintaining a belief about ¢, a;,...,4,,
and only those b, terms for compounds we have
measured, we can reconstruct our belief as needed
about those deviation terms that we are not explicitly
tracking.

Toward this end, let us define a vector «, that
contains a=({,a,,...,4;) and the b, for x ranging
over the unique alternatives in x°,...,x""!. This vec-
tor plays the role that « plays in §4.1. Let 0" and C"
be the mean and variance, respectively, of our time n
posterior belief distribution on «,. Note that ay=¢,
6° = (E[{],E[a,], ..., E[a;]), and C° is a diagonal matrix
whose diagonal is (E[{],E[a,], ..., E[a]).

Before providing recursive expressions for 6" and
C", C*', we first define two quantities, "' and Cr-1.
If we have previously measured alternative x", so x" €
{x°,...,x"1}, then let §"'=6"" and C'=C""L If
we have not previously measured x”, then let 9” !
be the column vector obtained by appending a scalar
zero to 0"1, and let C"! be the (14+k+n) x (1+k+mn)
matrix obtained from the (k+mn) x (k+n) matrix C"!
by adding one extra row and column after the last
row and column of C""!. This extra row and col-
umn is all zeros, except for the diagonal entry, which
is o?. These quantities §"~! and C"~1 are constructed
so that our time n—1 posterior belief distribution
on a, is N(6"!,C" ). In addition, let #* be a col-
umn vector of zeros and ones, with a one at exactly
those indices of a"*! for which the alternative x" con-
tains the corresponding base alternative, substituent,
or deviation term. We also define &1 =y"+ —(§")7 %"
and y"=A,.+((%")TC"%". With these definitions, we
may update 6" and i recursively from 6" and C"
(via 6" and C", respectively) as

» cn+l
Hn+1 — 0”+—ann, (5)
,yn
Cn+1 Cn ” (énin (jn)Tén). (6)
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These updating equations allow us to maintain our
belief about «, in a computationally efficient way,
which is analogous to the way in which we were able
to recursively maintain our belief about « in §4.1.

We now show how KG factors may be computed
from a belief on «, parameterized by 6" and C”.
Because the KG factor is given by v, =h(u", (3", x)),
it is enough to compute p" and (2", x) efficiently
(without computing the much larger matrix ") and
then use the standard implementation of 4. The first
term u" does not depend on x and is given by

M” — XH 911

where X" is a M x |a,,| matrix of zeros and ones whose
each row corresponds to an alternative and has a one
for the base alternative and each substituent and devi-
ation term from «, contained within the alternative.
To compute the second term ¢"(3",x), fix x"=x and
the corresponding «,,, and C" resulting from this
choice of x". Let X" be a M x|a,, | matrix that is
similar to X", except that it maps alternatives to com-
ponents of «, ; rather than «,. That is, each row
of X" corresponds to an alternative and has a one for
the base alternative and each substituent and devi-
ation term from o, ,,; contained within the alterna-
tive. Then, observe that the beliefs about those b, not
included in «,; will not change as a result of mea-
suring x", and so ¢(3",x"), which is the standard
deviation of the change in beliefs about the values
of the alternatives, is not affected by these deviation
terms not included in «,,;. We can thus compute
0(2",x") by dropping these left-out deviation terms.
In such a model in which these deviation terms out-
side «a,,; have been left out of the model, the xth
column of 3" is

5 =@,
and &(3",x") may be computed from this vector
via (2", x)=2"e,/\/A,+27.. The resulting method
of computing the KGCB policy is summarized in
Algorithm 5.

Algorithm 5 (General KGCB, algorithm)
Require: Inputs 6", C", and X"
1. p'" < X"0"
2: for x=1to M do
Compute C" from C" and x
S X &)
a<pu"
b3y [VA 43
v<h(a,b) % use Algorithm 2
if x=1 or v>v* then
Vi<—v, x*<x
10: end if
11: end for

With these expressions, we may compute the KG
factor for alternative x in the general model without

explicitly computing a covariance matrix 3". The
dimensionality of the objects 8" and C” that we must
retain in memory is the sum of 1+k together with the
number of unique alternatives measured. When the
number of measurements that can be made is much
smaller than the number of alternatives—as it is in
drug discovery—this is a significant savings.

5. The KGCB; Algorithm for the
Free-Wilson Model

We now return from the general model to con-
sider only the Free-Wilson model from §2.1. When
using this model, we may compute the KGCB policy
with even greater efficiency than has been described
thus far. This further improvement has at its heart
Proposition 1.

This proposition states that the calculation of each
KG factor, which would ordinarily require us to con-
sider the entire family of molecules, may be decom-
posed into the sum of a set of much smaller and
easier-to-compute KG factors. Each of these smaller
KG factors is the KG factor that would result from a
base molecule with substituents only at a single site.
Because the number of compounds grows exponen-
tially with the number of substituents per site, and
because of the complexity of computing a KG fac-
tor scales as O(slogs), where s is the number of sub-
stituents considered, this decomposition dramatically
reduces the computational effort required to compute
a KG factor. Although the KGCB policy still needs
to calculate the KG factor that corresponds to each
possible measurement to find the largest one, faster
calculation of each KG factor makes the overall com-
putation much faster as well.

Before we state Proposition 1, recall that 67 =E,[4/]
and 0 =E,[{] are the means of the time n posterior
belief distribution on the value of substituent j and
the base molecule, respectively, and that L(j) is the site
at which substituent j may be placed. Additionally,
let A,e{i: L(i)=¢} so that A, is a vector containing
those substituents that may be placed at site £.

ProrositioN 1. Under the Free—Wilson model,

V;:'KG = Zh((ein)ieA(l)u[—ll ’ (&;i)ieA(Z)U[—l])/
4

where (G7t)2:=Var,[0/"! |x"=x] for i>0 and 6", =
G =0,

Proor. We write

maxu” = maxE,,, [Zajsf +é’j| =max)_6/""s} 465"
¥ X/ - x! -
] 1

= HE?XZ(Z 61)’1+11[L(i)—e]> +6;"!
¢\

=Y max 60" +05,
T ieA(Ul-1) !
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where 6'] is defined to be 0, and where the cru-  which gives the vector & , with i ranging over all the

cial final step occurs because the maximum over x’ is
achieved by the x’ that places the substituent with the
largest estimated value in each site (or no substituent
in a site, corresponding to i =—1, if all the estimates at
that site are negative). Substituting this expression for
maxx, wt! and noting that the tower property implies
E,[E, 1 [¢{11=E,[{]=0;, we obtain

[6n+1] _
03+1:|

|:Z max l”“i| +6;.

icA(8)U{—1}

[E I:maXM11+1:| — HE |:Z ma ;1+1+

icA( ou[ 1}

Then, noting that max, u} =3, max;cs 1) 07+ 6y
by an argument similar to the one for max,ul",
max

we have
n KG n n

E, [ - ] 9
(Z ieA(0)Ul—1) =X 0)
_ 0’1 0”
(T, e)

- %:[E”[

0n+1

max 0;1+1 xn n
ieA(Q)U{—1}

=x]— max 6.
icA(®)U[—1)

Because the joint distribution of (8/!),. A condi-
tioned on 7%, and x"=x is the same as that of the
7, conditional distribution of (6] +0;Z);ca«), Where
Z is a one-dimensional standard normal random vari-
able, and because Gf“ 0= 9” + 6. Z almost surely, we
substitute for 7' and

max 6'+0o, Z] max 6!

n KG E [
Z icA(O)U{—1} xi icA(OU(-1} '

= Zh( 0 )IEA (OU{— ( )IGA(( })‘ O

To actually use the decomposition property inher-
ent in this Proposition 1, we must first compute 7,
We have (¢7,)*>=Var,[E,. [a;]|x"=x], which, using
the conditional variance formula and the fact that

E,[Var,,[a;]]=Var,_,[a;], becomes

(07)=

We have Var,[4,]=C

Var[a,] - Var[a; | x" =x].

and by (4),

ll’

Valr[ai] — TCI7+1 [Cn Cnfn(in)Tcnilei
n+ ”

n eiTCnJ“C’n(in)Tcnei
ii Axn _’_(in)TCnfn '
Therefore,
TC”JE”()E”)TC”ei

(~n 2
/\x” + (fn)Tanén ’

substituents (not just those corresponding to a partic-
ular site) as
- Cﬁfﬂ
O, = - = )
VA (@TCrxn
We summarize the resulting implementation below
in Algorithm 6.

Algorithm 6 (KGCB; algorithm)
Require: Inputs 6", C", and X
1: for x=1to M do

- Cni.n
2: o <«
YA+ E)TCrxn

3 v, <0

4.  for ¢{=1toL do

5: P < (67 icaui-1)

6: q < () icawui-1)

7 v, < v, +h(p,q) % use Algorithm 2

8:  end for

9: ifx=lorv,>v"do
10: V'<—v, X'<x
11: end if
12: end for

If there are | dimensions with M, substituents that
can be placed at each dimension, the number of total
alternatives is M = (M,)". The computational complex-
ity of Algorithm 4 is O(M?*InM), which is equivalent
to O(I(M,)*In(M,)). The computational complexity of
Algorithm 6, on the other hand, is O((M,)'I(M,)In(M,))
because the outer loop executes (M,)" times while the
inner loop executes I times and takes O((M;)In(M))).
Thus the efficient implementation has a computa-
tional complexity of O(I(M,;)*!In(M,)) compared with
O(I(M;)*In(M,)) for the previous implementation.

6. Empirical Study

We simulate the performance of the KGCB algorithm
using data from a previously published QSAR study
of narcotic analgetics by Katz et al. (1977) that uses
the Free-Wilson model. Their paper contains a set of
6,7-benzomorphans, which have five sites at which
substituents can be attached. The molecule is shown
in Figure 2. At the site labeled R, there are 11 pos-
sible substituents (together with H); at site R,, there
are 8 possible substituents; at site R;, there are 5
possible substituents; at site Ry, there are 6 possible
substituents; and at site R;, there are 11 possible sub-
stituents. The collection of compounds resulting from
choosing a substituent at each site contains 11 x 8 x
5x6x11=29,040 compounds. In addition, each com-
pound can be charged positively or negatively or
be neutral, which brings the number of compounds
to 87,120. Katz et al. (1977) provide experimentally
observed activity values for 99 of these compounds.
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Figure 2 An Example of Substituent Locations (Marked with

Ry, ...,Rs)
Source. Reprinted with permission from Katz et al. (1977). Copyright 1977
American Chemical Society.

In §6.1, we describe methods for choosing the prior
distribution on the values of this collection of com-
pounds. In §6.2, we present an empirical study of
the performance of KGCB on this collection of com-
pounds and compare it against two other policies. In
§6.3, we discuss other policies that we did not com-
pare but could be included in a more extensive empir-
ical study.

6.1. Prior Distribution on the
Substituent Contributions

When choosing a prior distribution, one may be
working with experienced practitioners who may be
able to articulate their prior distributions on the val-
ues of compounds or substituents. In many cases,
however, even if one is quite experienced in drug dis-
covery or is working with those who are quite expe-
rienced, it may be difficult to articulate prior beliefs.
In such cases, it is useful to have a method for setting
the prior distribution from some other source, such
as previous measurements of families of molecules
that may be completely different from the one to
which drug discovery effort is being applied. We now
present one such method that may be used with either
the Free-Wilson model or the general model.

We first discuss prior distributions for the Free—
Wilson model. Our method of choosing a prior distri-
bution supposes that there exists a large population
of substituent values in nature and that nature has
drawn independently at random from this population
the particular substituent values to create the family
of compounds being investigated. We suppose that
we may approximate the distribution of values within
this population with a normal distribution whose
mean and variance we can estimate. A method of esti-
mation is discussed below.

Our method also supposes that we began with
a noninformative belief on the value ¢ of the base
molecule. This belief was subsequently updated by a

laboratory measurement that provided an informative
belief on the value of the base molecule that we will
use within our prior distribution. The mean of this
belief is the value of this measurement, and its vari-
ance is the variance of the measurement noise. A mea-
surement of the base molecule is generally available
in practice, because a molecule is usually chosen
to have its space of chemical derivatives searched
because it performed well on an initial screening of
many chemically dissimilar molecules.

Given these suppositions, our prior distribution is
given by taking 6] and Cj, to be the value and
measurement variance, respectively, of our previ-
ous measurement of the base molecule, and by tak-
ing 6 and C’ for i>0 to be the estimated mean
and variance, respectively, of the population of sub-
stituents. Our independence supposition causes the
off-diagonal terms of C° to be zero. These values
for 6° and C° specify a prior distribution as discussed
in §4.1, and the equivalent prior distribution on com-
pound values may be reconstructed also as discussed
in §4.1. This provides a prior distribution appropriate
for the Free-Wilson model.

We now discuss how this method of setting a prior
distribution can be extended to the general model. We
suppose, in a manner quite similar to our supposi-
tion about substituent values, that there exists a large
population of deviation terms from which nature has
drawn independently at random to create the family
of compounds being considered. Let o7 be the esti-
mated variance of this population. Without loss of
generality, we may assume that the mean of the pop-
ulation of deviation terms is zero because we can take
any nonzero mean and move it into the value of the
base molecule. Then the prior distribution, in the for-
mat of §4.3, is given by taking the same 6° and C° as
just described for the Free-Wilson model and using
this value of o7 in subsequent updates.

To use either of these methods for setting the prior
distribution, one needs access to a measurement of
the base molecule (with that measurement’s variance),
estimates of the mean and variance of the population
of substituents, and, when using the general model,
an estimate of the variance of the population of devi-
ation terms. These estimates may be obtained from
measurements of a reasonably large family of com-
pounds that may be quite dissimilar from the one
being investigated. Using these measurements, one
may use linear regression to estimate the substituent
values and deviation terms present in this family
of compounds. The substituent values and deviation
terms that result will certainly be a very small sub-
set of the entire population of substituent values and
deviation terms present in nature, but if one is willing
to suppose that they are representative of what one
may encounter in nature, then the population means



Negoescu, Frazier, and Powell: The KG Algorithm for Sequencing Experiments in Drug Discovery

358

INFORMS Journal on Computing 23(3), pp. 346-363, ©2011 INFORMS

and variances of the observed values may be taken as
estimators of the means and variances of the overall
populations. Because one might make this assump-
tion that the observed values are “representative,” it
is better if one has observations from multiple fami-
lies of molecules, and it is also better if the observed
values are from families that are more similar to the
one to which drug discovery effort is being applied.

We followed exactly this method of estimation using
the data in Katz et al. (1977), who provided measured
values for 99 of the possible 87,120 compounds. The
measurement technique used is quite accurate, and it
is reasonable to take the measured values as the “true”
values. By fitting a multiple linear regression to this
data set, we obtain substituent values and deviation
terms. From these values, we estimate the mean and
variance of the population of substituents as 0.31 and
0.47, respectively, and the variance of the population
of deviation terms as o7 =0.15.

6.2. Simulation Results

Before discussing the ability of KGCB to discover
good molecules with relatively few measurements in
simulation, we first describe the computational costs
and memory requirements of the various implementa-
tions of the Free-Wilson-based KGCB implementation
on the set of 87,120 compounds. Algorithm 6 is able
to compute the KGCB decision and update the belief
in less than three seconds, which is approximately
100 times faster than Algorithm 4. We were unable to
run the standard implementation on this data set of
87,120 compounds because it stores and manipulates
a covariance matrix on the compounds with dimen-
sion 87,120 x 87,120, which requires 14 GB of memory
(if only the upper triangular part of the symmetric
matrix is stored and a four-byte single-precision float-
ing point format is used). This memory requirement
could not be met by the hardware available to us.
In contrast, Algorithms 6 and 4 manipulate a covari-
ance matrix on the attributes with dimension 43 x 43,
requiring only 3.6 KB of storage (15 KB if the full
matrix is stored in double precision).

In our simulations, we observed the number of
measurements required by the KGCB algorithm to
find good compounds among collections of com-
pounds of various sizes. In these simulations, we
compared KGCB with two policies: a pure explo-
ration policy that chooses compounds to test uni-
formly at random, and a policy from the frequen-
tist design of experiments (DOE) literature based on
a linear model, called one-factor-at-a-time (OFAAT)
(Montgomery 2005). This policy begins by testing the
base molecule and then sequentially tests each com-
pound created by adding one substituent to the base
molecule.

The OFAAT policy neglects interaction between fac-
tors (Montgomery 2005). In most applications, this

is detrimental to performance; however, under the
perfectly linear Free-Wilson model, there are no inter-
actions between terms, and thus neglecting interac-
tions provides an advantage to OFAAT. In the general
model, where factors interact via the deviation terms
b,, a factorial design would perhaps be more appro-
priate (Montgomery 2005), but such designs are infea-
sible in problems such as our drug discovery problem
that have many dimensions.

In our simulations, we maintain beliefs for each
competing policy (exploration and OFAAT) using the
same updates as in the KGCB algorithm, and we
use these to choose implementation decisions. This
allows the other policies to take advantage of the
linear structure of the problem in generating imple-
mentation decisions, even if they do not in generat-
ing measurement decisions. We emphasize that these
belief updates use correlated beliefs that give our
pure exploration policy a substantial advantage over
any policy that uses independent belief updates. With
our version of pure exploration, even though it mea-
sures uniformly at random, it learns about the com-
pounds through correlations in the same way that
KGCB does.

Although we compare only against pure explo-
ration and the DOE-based OFAAT policy, other
policies from the literature that more completely
exploit the structure of the problem might have per-
formed better. Although the measurement decisions
of OFAAT were chosen with the knowledge of the lin-
ear structure of the problem, they do not exploit the
objective function (which rewards information about
the best alternative rather than information about all
alternatives), and so other DOE-based policies might
perform better. Pure exploration takes advantage of
the linear structure of the problem only when making
its implementation decisions and not when making
its measurement decisions. Thus it should be viewed
only as a benchmark representing nonadaptive learn-
ing. In §6.3, we discuss other policies from the litera-
ture that might be applied to this problem and could
be included in a more extensive empirical study.

Section 6.2.1 presents numerical results from the
Free-Wilson model described in §2.1, and §6.2.2
presents numerical results from the general model
described in §2.2.

6.2.1. Results Using the Free-Wilson Model. We
begin by describing results for the simple, linear-
additive model described in §2.1. We consider the
opportunity cost, defined as the difference between
the true value of the compound that is actually best
and the true value of the compound that is best
according to the policy’s posterior belief distribution.
Thus, once the opportunity cost is zero, the policy has
found the best compound. Although we consider the
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opportunity cost, which is a linear function of biolog-
ical activity, the value of a compound to a practitioner
is often a nonlinear function of activity, e.g., a case
where a compound may only be used as a drug when
its activity exceeds a threshold.

Figure 3 plots the average opportunity cost as a
function of the number of measurements using two
data sets (one with 2,640 compounds and the other
with 87,120 compounds) and two values for the noise
standard deviation (0.1 and 0.5). Using the measured
values published in Katz et al. (1977), we gener-
ate a truth for these compounds by fitting a linear
regression to the data, taking the true means 6 to
be the predicted values from the regression and the
standard deviation of the noise in our measurements
to be the standard deviation of the residuals from
the regression. For the 2,640 compounds data set,
we average over 100 runs, and for the 87,120 com-

(a) Average opportunity cost over 100 runs with
2,640 compounds and noise standard deviation 0.1

3.0
—— KGCB
25| —— Pure exploration
Bt —e— One-factor-at-a-time

2018

157

Opportunity cost

10

05

0 20 40 60 80 100
Measurement

(c) Average opportunity cost over 10 runs with
87,120 compounds and noise standard deviation 0.1
4

Opportunity cost
N

0 20 40 60 80 100
Measurement

Figure 3 Average Opportunity Cost Under the Free-Wilson Model

pounds data set, we average over 10 runs. Averaging
over more runs removes more of the variance intro-
duced by Monte Carlo sampling of the truths, caus-
ing the curves for 2,640 compounds to be smoother
than those for 87,120 compounds. As Figure 3 shows,
KGCB outperforms the other policies, with an aver-
age opportunity cost that is always lower.

OFAAT performs worse than both KGCB and pure
exploration. Although OFAAT is a first-order orthog-
onal design and is hence optimal with respect to a
minimal variance criterion (Myers and Montgomery
2002, §7.3.1), we consider a different criterion: the
ability to find the best compound. Also, OFAAT
measures compounds containing single substituents,
whereas KGCB and pure exploration measure com-
pounds containing several. Although this provides
OFAAT more information per measurement about
each substituent measured, the way that KGCB and

(b) Average opportunity cost over 100 runs with
2,640 compounds and noise standard deviation 0.5
3.0

25 |
2.0

151

Opportunity cost

10

05

0 20 40 60 80 100
Measurement
(d) Average opportunity cost over 10 runs with

87,120 compounds and noise standard deviation 0.5
4

Opportunity cost

0 20 40 60 80 100
Measurement
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pure exploration learn a little bit about more sub-
stituents seems to be better in this application.

KGCB also performs better than pure exploration.
Although pure exploration is able to use the full
Bayesian machinery to guide its implementation deci-
sions and thus take advantage of the linear structure
of the model, its measurement decisions are cho-
sen purely at random. In contrast, KGCB is able to
take information gleaned in the early measurements
to guide its later measurements to more informative
compounds.

To further compare the performance of KGCB and
pure exploration, we randomly selected sets of com-
pounds from the full set of 87,120 and performed
more extensive analysis on these smaller problems.
Figure 4(a) shows the expected opportunity cost of
KGCB and pure exploration on a single set of com-
pounds. To generate this figure, we randomly selected
a single set of 10,000 compounds, ran 15 independent
sample paths each for KGCB and pure exploration on
these compounds, and estimated the expected oppor-
tunity cost as a function of the number of measure-
ments. An estimate and its standard error is plotted
for each policy, where each error bar is twice the
standard error in each direction. Figure 4(a) shows
that the estimated expected opportunity cost for the
KGCB policy is lower than that of the pure explo-
ration policy.

Figure 4(b) shows the distribution of the difference
in opportunity cost over multiple sets of compounds.
To generate this figure, we randomly selected 75 sets
containing 10,000 compounds each. For each set of
compounds, we ran KGCB and pure exploration inde-
pendently and observed the difference in opportunity
cost as a function of the number of measurements 7.
When this difference is positive, pure exploration has
a higher opportunity cost, and KGCB performs bet-
ter. We then plot, for each n, the mean and standard
deviation of this population of 75 differences. This
characterizes the overall distribution of the difference
in performance between KGCB and pure exploration
across multiple sets of compounds. Figure 4(b) shows
that the mean difference is always positive after the
first measurement and has a maximum near the tenth
measurement. This suggests that the learning rate is
faster for KGCB than for pure exploration, and the
value of using the KGCB policy is maximized when
the measurement budget is small.

For more numerical work using the Free-Wilson
model, please see the Online Supplement (available
at http://joc.pubs.informs.org/ecompanion.html).

6.2.2. Results Using the General Structural
Model. We now present the results using the gen-
eral model described in §2.2. To simulate a true set of
compound values in this set of experiments, we take
the fitted values of 4; and { from Katz et al. (1977),

(a) Opportunity cost of KGCB and exploration

4.0

—— KGCB
3.5 I —— Pure exploration|

Opportunity cost

0O 20 40 60 80 100 120 140 160
Measurement

180 200

(b) Difference in opportunity cost

OC (Pure exploration) — OC(KGCB)

-20 . . L L L L . . .
0O 20 40 60 80 100 120 140 160 180 200
Measurement
Figure 4 (a) Average Opportunity Cost of KGCB and Pure Exploration,

Estimated Using 15 Sample Paths; (b) Difference in Average
Opportunity Cost Between KGCB and Pure Exploration, Esti-
mated Using 75 Sample Paths
Note. Both figures use problems with 10,000 compounds, noise standard
deviation of 0.38, and the Free-Wilson model.

and for each compound x, we generate b, indepen-
dently from a normal distribution with mean 0 and
variance o7 (where o7 was obtained from the fit as
well, as described in §6.1). We then combine these val-
ues according to the model to obtain true values for
the compounds.

We compared KGCB only to the pure exploration
policy, because OFAAT is not designed to handle the
deviation terms present in the general model, and
it did not perform as well as pure exploration in
the deviation-free Free-Wilson case. To test the per-
formance of KGCB under this model, we randomly
selected 10 different sets of 1,000 compounds each
and ran the KGCB algorithm using the prior distri-
bution described in §6.1. For each sample path, we
perform 150 measurements comparing KGCB to pure
exploration, and we plot the average opportunity cost
over the 10 runs just as in our previous experiments.
The results are shown in Figure 5.

As with the Free-Wilson model, the KGCB policy
performs significantly better than pure exploration.
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Figure 5 Average Opportunity Cost Over 10 Runs Using Different Data

Sets of 1,000 Compounds

Opportunity cost decreases more slowly in this test
than it did under tests that assumed the Free-Wilson
model. This is because this test adds deviation terms
to each molecule, which makes it harder for any pol-
icy to find the best compound. Although this test was
performed with 1,000 compounds and the general
model contains a different deviation term for each
one, the KGCB policy finds a very good compound
with many fewer than 1,000 measurements. This is
because o7 is smaller than Var(s;), which makes
learning the a; terms more important than learning
the b, deviation terms and allows a policy to find a
compound with small opportunity cost without learn-
ing all the deviation terms.

6.3. Other Related Measurement Policies

We have compared the KGCB policy against two
other policies: pure exploration and OFAAT. In this
section, we discuss other policies that a more exten-
sive empirical study might include and discuss their
relationship to KGCB. We note that KGCB has
been compared against many of these other poli-
cies in other problem settings and has outperformed
them there.

First, the BGO literature contains several rele-
vant policies. First, there are the expected improve-
ment (EI; Mockus 1972) and maximum probability of
improvement (MPI; Kushner 1964) policies, both of
which were discussed in §1. In addition, there is the
interval estimation (IE) policy (Kaelbling 1993), which
combines exploration with exploitation by measuring
the compound for which a particular linear combi-
nation of the posterior mean and posterior standard
deviation is largest. IE was applied to BGO in Cox
and John (1997), where it was called SDO, or sequen-
tial design for optimization.

As described in §1, De Grave et al. (2008) also
consider sequential designs for drug discovery and
actually apply all three of these policies to a drug
discovery problem (IE is referred to as the optimistic
strategy). However, that empirical study assumes that

measurements are free from noise, and the versions
of these BGO policies they employ require modifica-
tion for the noisy case before they can be applied to
the problem we consider here. In addition to these
three BGO policies, De Grave et al. (2008) also con-
sider three other policies: pure exploration; largest
value, which measures the untested compound with
the largest estimated value; and largest variance, which
measures the compound whose value has the largest
posterior variance.

Frazier et al. (2008) compare KG to IE, largest
variance, largest value, and pure exploration on
the ranking-and-selection problem with an indepen-
dent normal prior distribution. In this problem,
because the prior distribution is independent and
measurements of one alternative do not affect the
other alternatives, KG can also be understood as a
generalization of EI to the noisy case. (KGCB does not
reduce to EI when beliefs are correlated, even if mea-
surements are noise-free.) Frazier et al. (2009) compare
KG to El in a discretized version of the BGO problem,
as well as a version of EI generalized to handle noise
called sequential kriging optimization (Huang et al.
2006). In both of these studies, KG performed as well
or better than these other methods; it found better
alternatives with fewer measurements but required
more computation for each decision.

There are also policies from the DOE literature that
might be applied to this problem. In the numeri-
cal study of the Free-Wilson model, we compared
it against OFAAT. One could compare against other
first-order orthogonal designs or to a response surface
method (Myers and Montgomery 2002) using such
designs. One could also compare against screening
methods such as the sequential bifurcation method
described in Kleijnen (2008). With such screening
methods, it may be possible to determine which of the
substituents have the largest values with fewer mea-
surements than there are substituents. The sequential
bifurcation method cannot be directly applied because
it requires a knowledge of the sign of the effect of each
factor, but it may be possible to adapt this method
or other similar methods to the problem of drug
discovery.

7. Conclusions

Drug discovery is a long and expensive process for
which sophisticated sequential procedures like KGCB
are well suited. Such procedures have the poten-
tial to reduce the costs involved and to increase the
number of drug discovery efforts that find success
within budget. Our new algorithms for calculating
the KGCB policy allow efficient implementation on
large data sets, and our empirical study demonstrates
that KGCB performs much better than the pure explo-
ration and one-factor-at-a-time policies. Extensions
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and improvements to this work that we feel would
be of value include more extensive empirical com-
parisons between KGCB and other policies, as well
as implementations of the KGCB algorithm based on
other QSAR models.
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